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Abstract-In this paper, we consider the problem of finding the stress distribution in a highly stretched plate
containing a circular hole that is eccentrically reinforced by thickening the plate, on one side only, in an
annular region concentric with the hole. Asolution of the nonlinear Karman plate equations is obtained that is
asymptotically valid for large membrane stresses. We show that, except for a narrow bending boundary layer
in the neighbourhood of the boundary between the reinforced area and the rest of the plate, a state of plane
stress prevails and the reinforced area undergoes a transverse deflection that brings its middle surface into the
plane of the middle surface of the plate.

NOTATION
Note: All barred variables are dimensional variables.

D Eh'/[12(1- v')], flexural stiffness
E Young's modulus

(e", e"', eOn) P(Ehf'(e", e'o, eOn), middle surface strains
1 PR'j, Airy's stress function
h thickness of plate

H thickness of reinforcement
(M", M'o, MOo) Ph'Y-'(M", M'o, MOO), moments
(ir, N'o, N°O) P(N", N'o, N°O), membrane stress resultants

ii (Ii) Pn (Ii) = N" (Ii, R), radial stress resultant at the junction of the plate and reinforcement
P applied load (see Fig. I)

(Q', QO) Ph(R'Yf'(Q', QO), transverse shear stress resultants
Qeff Ph(R'Yf'Qeff' effective transverse shear

R outer radius of reinforcement
(r, Ii, Z) (Rx, Ii, hz), cylindrical polar coordinates

(ii, V) RP(Ehf'(u, v), inplane middle surface displacements
IV h'Y-'W, transverse displacement

(X, Y, Z) (Rx cos Ii, Rx sin Ii, hz), dimensional cartesian coordinates
(1' load ratio (see Fig. I)
f3 I in the plate and A in the reinforcement
'Y [6(1 - v')t'
5 (1- A)/(2A), dimensionless eccentricity of the middle surfaces
f' D/(Pr'), a small parameter
A h/H, plate thickness to reinforcement thickness ratio
v Poisson's ratio

pR radius of hole
(J dimensional radial extreme fibre stress in the lower surface of the plate and the upper surface of the

reinforcement at r = R.

1. INTRODUCTION

The problem of finding the stress distribution in a stretched plate containing a hole that is
reinforced by thickening the plate symmetrically about its middle surface in a region surrounding
the hole has received considerable attention. For example, Chapter five of the book by Savin[l]
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gives solutions to a number of problems involving circular and non-circular holes, and Wittrick[2]
gives several references to other work. The solutions are all obtained using the theory of plane
stress.

If the hole is reinforced unsymmetrically, by thickening the plate on one side only so that the
other side remains smooth, then the stretching of the plate is accompanied by bending. The
equations appropriate to this situation are the Karman large deflection plate equations, in which
the plane stress equations and the plate bending equations are coupled by the presence of
non-linear terms. This is a more difficult problem and fewer results are available.

The problem of a thin plate of infinite extent, containing a circular hole reinforced by uniformly
thickening one side of the plate in an annular region concentric with the hole, subjected to an
axially symmetric radial stress at infinity, has been solved by Wittrick [2,3]. In [3] he obtains
an asymptotic solution, valid for large stress at infinity. Reference [2] gives a more general
discussion of the axially symmetric problem and also contains an asymptotic solution for the case
when the added thickness is small.

Hicks had earlier considered both the above problem [4], and the corresponding problem with a
compact reinforcing ring eccentrically placed relative to the plate middle surface [5]. However, as
Wittrick points out in [2], the validity of Hicks' results is questionable since, although he takes
account of the effect of the membrane stresses on the equations of bending moment equilibrium,
the nonlinear effect of the transverse deflection on the membrane strains is ignored. Also, in [4],
he ignores the effect of the eccentricity of the middle surfaces in the equation of compatibility of
radial displacement at the edge of the reinforced area.

So far no one has considered the problem of a plate with an eccentrically reinforced circular
hole subject to non-axisymmetric stress at a large distance from the hole, or the case of a
noncircular hole. Alzheimer and Davis [6,7] consider the closely related problem of the
unsymmetrical bending of an annular plate where the bending is caused by the tilting, about its
diameter, of a rigid disc inserted in the annulus, the plate being fully built in at the disc and at the
outer radius. In [7] the plate is prestressed by a large axisymmetric stress applied at its outer edge.
They use a singular perturbation procedure similar to that used by Wittrick[3] to obtain a solution
which they then compare with the exact solution of their equations. These solutions are open to
the same criticism as those obtained by Hicks in that they ignore the effect of the transverse
displacement on the membrane strains. However, when the prestress is very large, this effect is
second order, as is shown in [3] and as will also be shown here, and in fact Alzheimer and Davis
state this as an assumption in their introduction to the paper of reference [7].

In this paper we look at the Wittrick problem when the plate is highly stretched by a large
biaxial stress system at infinity. That is, referred to cartesian coordinates X, Y and the stress
resultants at infinity are (see Fig. 1)

O~a~l. (1)

The solution obtained is asymptotically valid for large load P, and small bending stiffness. Notice
that when the load ratio a = 1 the problem reduces to that solved by Wittrick[3], and when a = 0
the plate is in a state of uniaxial stress at infinity.

As will be shown, this is a typical singular perturbation problem that can be solved by a fairly
straightforward application of the method of matched asymptotic expansion as described for
example by Cole[8] and Nayfeh[9]. The result is that, except for a narrow bending boundary
layer in the neighbourhood of the junction between the plate and the reinforced area, a state of
plane stress prevails and the reinforcing plate undergoes a transverse deflection that brings its
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Fig. I. Eccentrically reinforced hole in a plate loaded by biaxial stresses far from the hole.

middle surface into the plane of the middle surface of the rest of the plate (see Fig. 2). The nature
of the solution also suggests that this result will apply to any highly stretched plate containing a
hole of arbitrary shape that is reinforced by thickening the plate eccentrically in a region
surrounding the hole, providing that the junction between the plate and the reinforced area is in a
state of tension.

Wittrick [3], was able to evaluate all the terms in the boundary layer expansion mainly
because, in the axisymmetric case, the equations can be reduced to a pair of coupled, nonlinear,
second order ordinary differential equations. Here we must deal with fourth order partial
differential equations and, for this reason, only the leading term in the boundary layer expansions
will be obtained. It is clear that with sufficient labour the higher order terms could be evaluated.
In the next section the Karman large deflection plate equations are stated in the dimensionless
form that is appropriate to this problem and the boundary conditions are formulated. Sections 3
and 4 outline the application of the method of matched asymptotic expansions to these equations
and may be skipped if you are prepared to take the validity of the mathematical manipulations on
trust and are mainly interested in the results. Finally, Section 5 summarizes the main results in
terms of the physical, dimensional quantities of the problem and discusses the conjecture made in
the previous paragraph.

Fig. 2. Sketch showing the deformation of the plate when the load becomes very large.
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2. FORMULATION OF THE PROBLEM

Consider an infinite plate of thickness h subject, at infinity, to the biaxial stress state specified
by equations (I). The plate contains a hole of radius pR which is reinforced by increasing its
thickness, on one side only, to H in an annular region with outer radius R (Fig. 1). We shall
assume that the thickness of both sections of the plate is sufficiently small compared to the size of
the annulus, (1- p )R, for the Karman equations for large deflection of plates to apply. For
brevity, we shall refer to the annular reinforcing plate as the "reinforcement" and to the
remaining plate (r 2: R) simply as the "plate".

2.1 The nondimensional equations
Since the Karman equations for large deflection of plates are well known (see, for example,

Fung[lOD we set them down immediately in the dimensionless form that is most useful for the
present analysis. They are

(2a, b)

where

and (x, 8) are dimensionless plane polar coordinates.
The reciprocal load parameter

2 D
E = PR 2

(3a)

(3b)

(4)

becomes small when the load P is large and the plate bending stiffness D = Eh 3/[12(1- v 2
)],

where E is Young's modulus and v is Poisson's ratio, is small. The solution obtained here is
asymptotically valid as E ~ O.

If the parameter f3 = 1 then the equations apply to the plate and if f3 = A = h /H then they
apply to the reinforcement.

Equation (2a) is the equation of transverse equilibrium in terms of the transverse
displacement W, the nonlinear term on the right being the contribution from the membrane
stresses due to the large deflection. The stress function f is chosen so that the membrane stress
equilibrium equations are identically satisfied and f must then satisfy the compatibility equation
(2b). The term on the right of (2b) arises from the stretching of the middle surface due to its
transverse displacement w.

Dimensionless moments and membrane stress resultants are given by

(5)
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and

N ae _ a2f
- ax" (6)

Equations (5) are the moment-curvature constitutive relations and equations (6) define the stress
function. We shall also require the equation for the component Q' of the transverse shear acting
on an edge of the plate whose normal is in the radial direction:

(7)

Finally, in order to calculate the middle surface displacements u, v in the radial and
circumferential directions respectively, we require the middle surface strain-displacement
relations and the constitutive equations relating these strains to the membrane stress resultsnts:

e,e= !(1. au + av _~) + £21. aw ow = f3(l + v)N,e
2 x ao ax x x ax ao '

e ee =1...!!.E. +~ + £'(1. aW)2 = f3(N ee - vN").
x ao x x ao

(8)

The equations relating the dimensionless variables to the dimensional variables are listed in the
Notation. The dimensionless variables are defined in such a way that, over most of the plate and
reinforcement, they and their derivatives are order one. This means that, nearly everywhere, the
right hand side of equation (2b), for example, is of the order e2 compared to the left hand side and
may therefore be neglected in the first approximation, and similarly for the left hand side of
equation (2a). In the case of equation (2a), however, neglecting the left hand side reduces the
order of the equation by two with a corresponding decrease in the number of boundary
conditions that can be imposed. What happens in this problem is that near the junction between
the plate and the reinforcement (i.e. near x = 1) there is a bending boundary layer in which some
of the derivatives on the left of (2a) become of order £ -2, and these terms cannot be neglected in
this region. This is typical of singular perturbation problems and the method of matched asymptotic
expansions [9, 10] provides a mathematical formalism for dealing with this situation.

It is also important to remember that the displacements and strains refer to the middle surface
of the plate (if f3 = 1) or reinforcement (if f3 = A) and that the moments are moments about the
middle surface and the membrane stress resultants act in the tangent plane to the middle surface.
The form of the above equations is not affected by the eccentricity of the middle surfaces of the
reinforcement and the plate; the factor f3 appears because variables in both regions are
normalized relative to the plate thickness h. We shall take the origin of the coordinate system to
lie in the plane of the middle surface of the undeformed plate so that the middle surface of the
underformed reinforcement lies in the plane Z = - (H - h )/2, or in terms of the dimensionless
coordinate system

S&S Vol. 11, No.4-I

z = - a= - (1 - A)/(2,\), (9)
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where we shall call 8 the eccentricity. This eccentricity plays a vital role in formulating the
boundary conditions at the junction between the plate and the reinforcement as we shall now see.

2.2 Boundary conditions
First, the boundary conditions at the junction of the reinforcement and the plate. In order to

avoid introducing further sub- or superscripts we shall write all these boundary conditions in the
form

(reinforcement) := (plate).

That is, all quantities on the left of the equation are to be evaluated in the reinforcement and
those on the right are to be evaluated in the plate, no other distinguishing notation will be used.
Thus, at x = 1 we must have continuity of displacement and middle surface slope

where

2 aw
u - € (281') ax := U,

2 I awv - € (281') - - = v
x a8 '

(10)

and

w = w, (11)

continuity of two membrane stress components and transverse effective shear

N rr := N rr
, N rlJ :=N rlJ

, (12)

where

and moment balance
M rr

- (81' )N rr = M rr
•

(13a)

(13b)

(14)

The last terms on the left hand sides of equations (10), (13a) and (14) arise due to the ecentricity of
the reinforcement. The physical interpretation of these terms in (10) and (14) is clear, but the
presence of an additional term in the effective shear, on the left of (l3a), is not so obvious. It is
explained if we note that the shear stress resultant N r8 acting in the reinforcement, when
transferred to the level of the plate middle surface, gives rise to a moment - 8N r8 about a radial
axis. By the same argument used in explaining the Kirchhoff effective shear stress resultant, this
moment is statically equivalent to a shear stress resultant of -(8!x)(aN r8 /a8) on edge
x = constant in the reinforcement. Thus the effective shear on the left of equation (13a) must be
modified by the addition of this quantity. t

tAdditional terms such as those on the left sides of equations (10), (l3a) and (14) arise whenever two plates are joined
edge to edge with eccentricity between their middle surfaces. See, e.g. the discussion following equation (42) of [11].
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Second, we must specify boundary conditions far from the hole, i.e. as x -+ 00

NIT -+~ (1 +a) +~ (1- a) cos 28,

Nrll-+~(1- a) sin 28,

N"" -+~(1 +a) -~(1- a) cos 28,

(15)

where the right hand sides above are the dimensionless, polar coordinate transformation of
equation (I). Also the plate remains flat at infinity so that

w(x,8)-+0, as x -+ 00. (16)

This last condition implies that the moments and effective transverse shear also vanish at infinity.
Finally, we take the inner edge of the reinforcement to be stress free, so that at x = p,

N"=O, N"'=O, M"=O, Q.ff = O. (17)

We shall now use the method of matched asymptotic expansions to find a solution of the above
equations and boundary conditions that is asymptotically valid as E -+0. In Section 3 we obtain
outer expansions valid everywhere exceptin the boundary layer near x = 1 and in Section 4 we
obtain inner expansions valid in the boundary layer. The matching of the inner and outer
expansions is also carried out in Section 4 and in Section 4.4 we complete the solution by applying
the boundary conditions at the junction x = 1.

3. THE OUTER SOLUTION

Outside the boundary layer we expand all variables as power series in e. For example,

~

w(x, 8; e) = L e"wn(x, 8).
n=O

On substituting these expansions into equations (2) and into the boundary conditions (15) and
(16), at infinity, and (17) at the inner edge of the reinforcement, and equating the coefficients of
powers on E on each side of the resulting equations we obtain the following system of equations:
From equation (2a)

L(Wo, '0) = 0,

L(wl, '0) = - L(wo, 'I),

L(W2, '0) = j3-3V4wo - L(wo,h) - L(wl, 'I),

L(W3, fo) = j3-3VWI- L(wo,/J) - L(wt,/2) - L(W2,/1),

etc.

(18a)

(18b)

(18c)
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and from equation (2b)
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\74fo = 0,

\74fl = 0,

\74h = -13- IL(Wo, Wo),

\74h = -13- 12L(Wo, WI),

etc.

(19a)

(19c)

The boundary conditions in the plate at infinity are that as x ~ ce,

No"~ i(I +a) +i(I -a) cos 20,

No'·~- i (1- a) sin 20, (20a)

n2:: 1, (20b)

and
n 2::0.

At the inner edge of the reinforcement at x = p

(20c)

and
n 2:: 0, (2Ia)

M/'=O, n 2:: O. (2Ib)

Notice that, although equations (2) are nonlinear, equations (18) and (19), when solved
sequentially, are linear. We first solve (19a, b) for fo and fl. Next (l8a), which is now linear since
fo is known, is solved for Wo and then (l8b) can be solved for WI. Equations (19c, d) are now
solved for fz and h since their right hand sides are now functions of the known variables Wo and
WI. The procedure can be carried out to any desired order since once fa is determined the left
hand sides of equations (18) become linear differential operators acting on the Wn and, at any step
in the process, the right hand sides of (18) and (19) are functions of only those Wn and fn
determined in earlier steps.

3.1 Outer solution in the plate
In this problem we alter the above procedure slightly, for we observe that equations

(18) have the trivial solution

W n == constant = 0, n 2:: 0 (22)

which also satisfies the boundary condition (20c). Intuitively we expect that the plate
will remain flat over most of its area, and so we take (22) as the solution we seek.



Bending of a highly stretched plate containing an eccentrically plate-reinforced circular hole 509

Equations (19) now all reduce to homogeneous, biharmonic equations

n ~O, (23)

whose solutions, satisfying the boundary conditions (20a, b), are

1 2 [-' 1 2] 2fo = 4(1 + a)x + ao In x + box - + Co - 4(1 - a)x cos 8,

fn = an In x + (bnx-2 + Cn) cos 28, n ~ 1.

(24a)t

(24b)t

The constants an, bn , Cn, n = 0, 1, 2, ... , are determined by matching these solutions
with the inner solutions, which in turn must satisfy the boundary conditions at the
junction x = 1. This is explained in Section 4.

The terms in the expansions of the membrane stress resultants, which we obtain by
substituting the results (24) into equations (6), are

and

n~1.

No" = ~ (1 + a) + aox -2 - [ 6boX -4 + 4coX -2 - ~ (1 - a)] cos 28,

No
r8 = - [6boX-

4 + 2COX-2+~ (1- a) ] sin 28,

No88 = ~ (1 + a) - aox -2 + [6boX -4 - ~ (1 - a) ] COS 28,

N n" = anx -2 - (6bnx -4 + 4cnx -2) cos 28, }

N nr8 = - (6bnx -4 + 2cnx -2) sin 28,

N n
88 = -anx·2 + 6bnx-4 cos 28,

(25a)

(25b)

The displacement field can be determined from equations (8) by substituting the
expansions, equating coefficients of powers of € and integrating the resulting system of
equations. We note that, since W = 0 in the outer region, equations (8) are linear. As we
do not use this result explicitly in this paper we omit it.

3.2 Outer solution in the reinforcement
Again we adopt the simplest solution to equations (18),

Wn(x, 8) = constant = On, say, n ~O. (26)

It is not intuitively obvious that this solution is physically appropriate since, as the inner
edge, x =p, of the reinforcement is free, we may expect it to wrinkle. However, we
shall see that this solution is capable of satisfying the boundary and matching

tFor solutions of the biharmonic equation in the theory of plane stress see. e.g. Timoshenko and Goodier[l2].
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conditions of the problem. It clearly satisfies the free edge boundary conditions (2Ib) of
zero moment and effective shear.

As above, equations (19) reduce to V4 fn = 0, n = 0, 1,2, ... , and the solutions which
satisfy the stress free boundary conditions (2Ia) at x = pare

fn = an [In x _4x 2p-2) + {bn(x-2- 3x 2p-4 + 2x 4p-6)

+ cn (1- 2x 2p-2 + X
4p-4)} cos 2fJ, n ::::: O. (27)

Stress resultants, strains, and displacements are calculated as explained above. The
constants an, bn and cn are determined by matching with the inner solution in the
reinforcement near x = 1.

4, THE INNER SOLUTION

4.1 The boundary layer equations
Near x = 1 we expect that w will be changing rapidly and that its derivatives with respect to x

may be much greater than order one, in which case some of the terms in V4w and L(w, w) in
equations (2a) and (2b), respectively, will be very large. We therefore introduce the coordinate
stretching transformation

y = (x - I)/E, (28)

(29)

which makes aw/ay order one in the boundary layer if aw/ax is order E-
1 there. The boundary

layer equations are obtained in a more convenient form if the right hand side of equation (2a) is
expressed in the alternative form (see equations (3b) and (6»

L( f) = N rr a
2
w+2N rlJ -.i. (1. aw) N 66 (-l a

2
w 1. aw)

w, ax 2 ax x ao + x2 ao2+x ax .

To obtain the boundary layer equations we make the coordinate transformation (28) in the
equations of Section 2, substitute inner expansions of the form

x

W = L EnWn(y, 0),
n=O

and then equate the coefficients of powers of E on each side of the resulting equations.
From equation (2a) we obtain

(30)

a4 , 2 '

~_ f33JV rr a Wo - 0 (3Ia)ay4 0 ay2 - ,

a
4
WI_ f33JV rr a

2
WI = -2 a

3
wo + f33 IV rr a

2
wo + f3 32N rlJ a2wo+ f33JV 66 awo (3Ib)

ay· 0 ay2 al 1 ay2 0 ayao 0 ay'

etc.
and from (2b)

a4
/ 1 _ -2 a3/0

ay· - al'

a4/2 __ 2a3/I+a3/0_2 a4/0 +a2/0
ay4 - al if ay2ao2 ay2'

etc.

(32a)
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The terms of the inner expansions of the moments and the membrane stress resultants, obtained
from equations (5) and (6), respectively, are

M
A

rr _ -f3-3 a
2
wo M rr = _f3-3(a

2
W\ + awo) (33a)

o - ay2 , \ ay2 jI ay ,

A r6
Mo =0, (33b)

(33c)

and

(34a)

(34b)

(34c)

(35a)etc.,

Note that in the plate f3 = 1, y 2: 0, and in the reinforcement f3 = A, Y =:; 0. Expressions for the
terms in the inner expansions of the other variables can be obtained in a similar manner.

The boundary layer solutions must satisfy the boundary conditions at the junction between
the plate and the reinforcement at x = 1. In terms of the inner expansion variables, and again
using the convention (reinforcement) = (plate) of Section 2.2, these conditions are, from
equations (10) and (11) for continuity of displacement and middle surface slope,

A 2 ~ awo A

U\ - u'Yay = U\,

etc., (35b)

n 2: 0, (36)

and continuity of stress resultants, equations (12),

n 2:0, (37)

and effective shear (13),

(38a)

(38b)
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where

(Q' ) = _f3" 3(a
2
WI_ f3 3N "awl) _ f3-3a2wo N "awo N r"aWO

eff 0 al 0 ay al + I ay + 0 ao'

and lastly the moment balance equation (14) becomes

(38c)

etc. (39)

At first glance, it might appear to be impossible to carry out the sequential solution of these
equations since, for example, the order one term in the inner expansion for the membrane stress
resultants depends on 12 (see equation 34c), and the order one term in the inner expansion for
effective shear, equation (38c), involves WI and N/r

, which in turn involves 12 (see equations 3tb
and 34a). However, as we shall see next, the solution can be carried out sequentially mainly
because equations (32a, b, c) for 10, 11 and 12 do not involve the transverse displacement. (The
next equation in this sequence involves wo but we shall not require 13.) Since the boundary layer
equations are so complicated, only the leading term of the expansions for the moments and stress
resultants have been found. In particular, we shall see that to order one the membrane stress
resultants are not affected by the bending boundary layer.

4.2 Solution of the boundary layer equations in the plate (y 2: 0, f3 = I)
The general solution of equation (32a) is

(40)

where the functions cPn (0), n = 0, 1, 2, 3, are to be determined from the boundary conditions at
y = 0 and the matching condition.

In this problem it is necessary to carry out the matching of the inner and outer solutions
before applying the boundary conditions at y = O. Following Cole [8], we assume a region near
y = 0, of overlapping validity of the inner solution (40) and the outer solution (24a) and introduce
an intermediate variable

where

_ (x - 1)
y = fL(E) , so that x = 1+ flY, v =!:!:. y-

o €'
(41a)

as E~O. (41b)

Substituting from (41a) for x and y in fo(x, 0) and 10(Y, 0), respectively, and then expanding the
result in powers of fL (€) we find

fo = ~(1 + a) + [bo+ Co - ~(1 - a)] cos 20

+ fLyHO + a) + ao- [2bo+W - a)] cos 20}+ O(fL 2),

10 = cf>o(O) + (;)cP1(O)Y + (;YcP2(O)y
2
+ (;YcP3(O)y3.

(42a)

(42b)



Bending of a highly stretched plate containing an eccentrically plate-reinforced circular hole 513

Matching to order one consists in the agreement of the two expansions to terms of order one as
E~ 0, Y fixed, (i.e. x ~ 1 and y ~ 00), or formally we have

E-o..... A

lim {fo+ E/I + ... - fo- Efl - ...}= O.
yfixed

(43)

On substituting expansions (42) into (43) and performing the limit process indicated we see that

and

(since ;~OO as E~O),

jo = cf>oUn = ~(l + a)+ [bo+ co-~(l- a)] cos 2e = fo«(J, 1). (44)

Thus jo is a function of (J alone and is just equal to the value of the outer solution fo( (J, x) on the
boundary x = 1. The constants ao, bo, Co remain to be determined from the boundary conditions.

We can now solve equation (32b) whose right hand side is zero and whose general solution is
therefore

(45)

Expanding this and the outer solution N (J, x), equation (24b), in terms of theintermediate variable
we have

2 3

jo+ Ejl = cf>0«(J) + EI/Jo((J) + ILI/h( (J)y +~ l/!l(J)y2 + IL2l/!3( (J)y3,
E E

fo+ Efl = ~(l + a)+ [bo+ co-~(l- a)] cos 2(J

+ lLy{i(l + a) + ao - [2bo+ ~(l- a)] cos 2(J}

+ dbl + CI) cos 2(J + O(IL 2),

(46a)

(46b)

and matching to order E consists in the agreement of the two expansions (46) to terms of order E
as E~ 0, Y fixed, i.e.

Performing this limit process we find

l/!0«(J) = (bl + C1) cos 2(J, )

l/!I«(J) = ~(l + a)+ ao- [2bo+~(l-a)] cos 2(J,

l/!2«(J) = l/!M) == 0,

(47)

and note that IL (E) has been further restricted since we have assumed that IL 2{E~ 0 as E~ 0 so
that E~ IL «; VE. Substituting (47) into (45) gives us

jl«(J, y) = (b l + cd cos 2(J +{i(l + a)+ ao- [2bo+~(l-a)] cos 2(J}y. (48)
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In a similar manner we obtain
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f2(8, y) = (b 2+ C2) cos 28 + (al - 2b l cos 28)y

+Ho + a) -4ao+ [3bo-i(! - a)] cos 28)y2, (49)

the constants ai, bl, CI, b2 , C2 to be determined from the boundary conditions.
Equations (34) can now be used to obtain the terms in the inner expansion of the membrane

stress resultants. In particular, the order one terms are

No" (8, y) = 40 + a) + ao + [40 - a) - 6bo- 4co] cos 28 = No" (8, 1),)
No'0(8, y) = - [40 - a) +6bo+ 2co] sin 28 = N o,0(8, 1),

No 00 (8, y) =40 +a) - ao- [40 - a) - 6b o] cos 28 = N ooo(8, 1)

(50)

where the terms No" (8, I), etc. on the right are the leading terms of the outer expansion evaluated
at the junction x = I between the plate and the reinforcement.

By expressing the stress-strain-displacement relation (8) in terms of the boundary layer
variables, substituting the above expressions for the stresses and integrating the resulting
equations, we can show that

Uo(8, y) = uo(8, I), Vo( 8, y) = vo( 8, I), (51)

where the terms on the right are the leading terms in the outer expansions for the displacements
(u, v) evaluated at the junction x = I.

We now turn out attention to equations (31) to find the transverse displacement. Notice that
No" which occurs as a coefficient on the left hand sides of these equations is a function of 8 alone
[see equations (50)] and so the general solution of equation (3Ia) is

Wo(8, y) = Ao(8) exp [- Vn(8)y] + Bo(8) exp [+ Vn(8)y] + Co(8) + Do(8)y, (52a)

where
n(8) = No"(8) = No"(8, I). (52b)

This must be matched to the outer solution in the plate which we recall is [equation (22)]
wo(x, 8) = 0 and it is clear that the formal matching procedure explained above is, in this case,
equivalent to the condition

Wo(8, y)~O as y ~x.

Hence, provided n(8) > 0, 05:: 8 < 211', the result (52) reduces to

w,,(8, y) = Ao(8)exp [- Vn(8)y],

Bo(8) = Co(8) = V o(8) =0,

and A o(8) is determined from the boundary condition at y = o.

(53)

(54)
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Finally, the order one moments as found from equation (33) are

(55)

4.3 Solution of the boundary layer equations in the reinforcement (y :::; 0, (y :::; 0, f3 = A= hIH)
The solution of the boundary layer equations in the reinforcement is carried out as it was in

the plate. Here we summarize the results. Having found the first three terms in the inner
expansion of the stress function, we can calculate the order one membrane stress resultants
which are

No" (8, y) = -110(1- pZ)p-2_ [660(1- p-4)+4co(1- p-2)] cos 26

= No"(8, 1),

No rlI (8, y) = -[6600 + p -4 - 2p -6) + 2Co(1 + 2p -z - 3p -4)] sin 28

= No'6(8, 1), (56)

No•6 (8, y) = -1100 +pZ)p-z+ [660(1- p-4+4p-6)-4co(p-2- 3p-4)] cos 28

= No·a(8, 1),

where the terms on the right of each equation are the leading terms in outer expansions evaluated
at x = 1. It can also be shown that the leading terms in the inner expansions of the displacements
(u, v) are equal to the leading terms in the outer expansions evaluated at x = 1, that is

ao(8, y) = uo(8, 1), (57)

It can now be seen that the solutions (50) and (51) in the plate, and (56) and (57) in the
reinforcement, which must statisfy the boundary conditions (35a, b) and (37) in order to fix ao, bo,
Co and 110, 60, co, are not affected by the transverse displacement. Thus, to order one, the
membrane stress resultants and displacements are the same as those for a plate reinforced
symmetrically about its middle surface. Since the solution of this problem is well decumented in
[1] and [13] we will not take it further here.

The leading term in the inner expansion for the transverse displacement is

Wo(8, y) = Ro(8) exp[+~y]+flo,

where n(8) is, by the boundary condition (37), as defined by equation (52b). That is

No" (plate) = n(8) = No" (reinforcement).

(58a)

(58b)

The results (58a) satisfies the matching condition [ef. equation (26)] Wo~ flo, as y~ - 00, provided
n(8»0, 0:::; 8 <277".

The leading terms in the inner expansions of the bending moments are

(59)

Ro(8) and flo remain with Ao(8) [see equations (54) and (55)] to be determined from the boundary
condition at y =°(x = 1).
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4.4 Application of the boundary condition at the junction between the plate and reinforcement
Continuity of transverse displacement, and middle surface slope, equations (36), gives

and

Hence

(60a)

(60b)

Thus, the moment in the plate is, from equation (55),

and in the reinforcement, from equation (59),

(61a)

Mo" = (l +,\ 3/2r'Don(8) exp [+\1'\ 3n (8)y], Y:s O. (61b)

Entering these results into the moment balance boundary condition (39) we obtain

Do = 8y, (62a)

or expressed in terms of dimensional quantities, we find that outside the boundary layer the
reinforcement has, to order one, a constant transverse displacement of

w(O,r) - ~(H - h). (62b)

Thus, to order one, as f ~ 0, the reinforcement is displaced so as to bring its middle surface into
the plane of the middle surface of the plate provided the junction between the plate and
reinforcement at r = R is everywhere subjected to a radial tension.

We have still to satisfy the effective transverse shear boundary conditions (38). When (54) and
(58a) are substituted into (38a) we see that both sides of (38a) are identically zero. Equation (38b)
can be shown to be equivalent to the moment balance condition (39), and is also, therefore,
satisfied by these results.

5. CONCLUDING REMARKS

The main reason for this investigation was to find what effect the eccentricity of the
reinforcement has on the stress distribution around the hole. We have shown that, as a first
approximation, with an error or order f = [D/(PR 2)t2

, the stresses are those obtained from the
plane stress solution, except in a boundary layer region with a width of order fR on either side of
the junction between the plate and the reinforcement at r = R. In this boundary layer, the plane
stress solution stress are increased in the upper surface of the reinforcement and lower surface of
the plate due to the bending moment induced by the eccentricity of the reinforcement. These
stresses and bending moments have their maximum values at the junction r = R where, in terms
of the physical, dimensional variables of the problem, they are [see equations (55) and (59)]:
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In the plate;

In the reinforcement;

AI" = v -tM88
"", - 1.. 3/2(1 +A3/2r14(H - h)n(6),

haln(6) "'" 31.. 1/2(1_ 1..)(1 + A3/2)-' + 1.

M" = v- tM88
"'" (1 + A3/y

t 4(H - h)n(6),

haIn (6) "'" 3A(1 - 1..)(1 + A312r t + 1

(63a)

(63b)

(64a)

(64b)

where A = hlH, ii(6) is the radial stress resultant at r = R, which must be positive (tension) for all
6 if these results are to be valid, and a is the radial extreme fibre stress.

The stress quotients (63b) and (64b) are shown as functions of A in the graphs in Fig. 3. The

1'8

1·6

~
n(6)

1'4

1 '2

" = h/H

Fig. 3. Radial extreme fibre stress quotient vs thickness ratio A.

severest case arises if A = 0·25 when the extreme fibre stress in the lower surface of the plate is
exactly twice the stress that would occur in the symmetrically reinforced plate.

These results have a striking simplicity and we note that they depend only on the thicknesses
of the plate and reinforcement, and on the radial tension at their junction. The result agrees with
that of Wittrick[3] for the axisymmetric tension at infinity. Perhaps it is not unreasonable to
conjecture that the results (63) and (64) are true for any shape of hole in a highly stretched plate

Fig. 4. Moments and stress resultants.
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when the hole is reinforced by thickening the plate in the region of the hole on one side only. ii «(J)

would, in this case, be the tension at the junction between the plate and the reinforcement in the
direction normal to the junction curve, and calculated on the basis of the plane stress equations.
Since a number of such plane stress solutions exist (see, e.g. Savin[l] and the references in
Wittrick[2J), it is a simple matter to use (63) and (64) to estimate the change in the stress
distribution at the junction due to eccentric reinforcement.

Acknowledgement-I wish to thank Professor W. H. Wittrick, who suggested this problem to me in a conversation we had
during his recent visit to the University of Sydney.
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